
The past decade has seen an enormous shift in how 
patients with acute stroke are assessed and treated, and 
these changes have improved patient outcomes1. The 
widespread availability and speed of multimodal CT 
imaging has transformed the information that clini­
cians are using to make treatment decisions2. However, 
more options for imaging and treatment have increased 
the complexity of acute stroke assessment, which makes 
staying up to date with advances a constant challenge for 
stroke clinicians. In parallel, increases in the depth and 
breadth of imaging analysis techniques3 have increased 
the skills required for the interpretation of imaging 
data4, reflected in the rapid alterations of guidelines for 
stroke treatment and assessment over the past 2 years5. 
Traditional randomized trials to assess new imaging 
tools that are being developed are unlikely to be done 
because assessing the impact of imaging on treatment 
decisions would require limiting the information avail­
able to clinicians — preventing access to potentially vital 
information in this way could be contentious.

We suggest that further automation of image cap­
ture and analysis with artificial intelligence (AI) will be 
needed to harness the full potential of modern stroke 
assessment methods. However, to be practice changing, 

AI should increase the accuracy of diagnosis, improve 
the speed of decision making and add precision to indi­
vidual patient care. In this Review, we explore the use of 
AI and decision assistance in clinical practice for stroke 
— AI could have other roles in stroke management, but 
we focus on its application to image interpretation. We 
first summarize the importance of imaging in stroke  
and the clinical benefits it can provide, before consider­
ing the types of AI and how they can be applied to the 
development of decision support systems in the man­
agement of acute ischaemic stroke. We consider the 
potential of such systems, the difficulties involved and 
suggest how the field could move forward. We do not 
discuss in depth the AI techniques available, but their 
resulting application.

The importance of imaging in stroke
Revolutionary developments in the treatment of ischae­
mic stroke, including pharmacological thrombolysis 
and mechanical clot retrieval, have been seen in the 
past decade. The use of imaging for the selection of 
patients has had a crucial role in these developments, 
and clinical imaging is essential to the application of 
these therapies in practice. In this section, we discuss 
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the imaging modalities used and the benefits of imaging 
in the clinical setting.

Imaging modalities
Modern imaging assessments for ischaemic stroke are 
based on CT and MRI. CT is currently the most ubiqu­
itous imaging platform owing to its low cost relative to 
MRI, the limited requirements for prescan safety assess­
ments and ease of access in most health settings glob­
ally. Before the advent of thrombectomy, most stroke 
guidelines included only non-​contrast CT as a require­
ment for the assessment of patients with suspected 
stroke. Additional imaging was considered wasteful and 
time consuming, a point that is still argued by some6. 
However, a radiological diagnosis of hyperacute stroke 
by use of non-​contrast CT alone is often a diagnosis of 
exclusion and, in most patients with stroke, no notice­
able changes are seen with non-​contrast CT for up to 6 h 
after symptom onset7. Furthermore, CT has a sensitivity 
of just 26% for acute detection of ischaemic tissue when 
compared with MRI8.

These limitations of non-​contrast CT mean that tri­
als of treatments for stroke in which patients are only 
assessed with non-​contrast CT are likely to include a 
high number of patients with stroke mimics (for example, 
migraine with aura, focal seizure or psychogenic symp­
toms) and patients in whom spontaneous reperfusion 
occurs; in these subsets of patients any benefit of ther­
apy is difficult to measure owing to an otherwise good 
natural history. Only 17% of patients with stroke have 
a large-​vessel occlusion, for which early treatment has 
the greatest effect, so a broadly selected cohort makes it 
challenging to identify treatment benefits. These prob­
lems were particularly apparent in the NORTEST trial9, 
in which 0.4 mg/kg tenecteplase was compared with 
0.9 mg/kg alteplase for acute stroke thrombolysis and 
no significant difference was seen between the effects of 
treatments. Patient selection for NORTEST was based on 
non-​contrast CT, and 18% of enrolled patients did not 
have a final diagnosis of stroke on subsequent review. In 
other large phase III trials of thrombolysis in stroke, the 
rates of stroke mimics have not been reported, detailed 
post hoc analysis has not been conducted and/or the pres­
ence of spontaneous reperfusion has not been assessed10. 
The inability to identify the true target population for 

thrombolysis (that is, those who could benefit from 
reperfusion therapy) by the use of non-​contrast CT 
alone means that a large proportion of patients who 
are enrolled in such trials have a good natural history, 
making it impossible to show a treatment effect11.

Modern imaging techniques, including CT angiogra­
phy, magnetic resonance angiography, CT perfusion and 
magnetic resonance perfusion can positively identify a 
stroke by detecting a blocked cerebral blood vessel (angi­
ography) or by identifying ischaemic tissue (perfusion 
imaging). For this reason, assessment with CT angiog­
raphy is a core requirement when considering use of 
thrombectomy because this approach provides positive 
identification of a large-​vessel occlusion (the treatment 
target) and confirmation of good access to the thrombus. 
Importantly, however, up to 70% of all ischaemic strokes 
involve an occlusion that is challenging to identify with 
CT angiography because it is too distal, but patients  
with such strokes could still be eligable for and benifit 
from treatment with thrombolysis.

The relative clinical values of each of the modern 
image acquisition techniques is a matter of debate 
because trials of thrombolysis versus placebo have 
involved only non-​contrast CT to rule out a primary 
haemorrhage, and patients with suspected stroke — but 
no positive confirmation of ischaemia — could have 
been enrolled and treated. Nevertheless, looking beyond 
clinical utility to the development of AI and decision 
support, we must consider that the measures generated 
by additional imaging modalities could be important 
in a model even if they are not widely considered to be 
clinically important.

Clinical benefits of imaging
In the past few years, several trials have been conducted 
to assess whether modern imaging in acute stroke can 
help to improve selection of patients who are likely to 
respond to treatment and improve patient outcomes, 
including fewer adverse events. These trials have 
demonstrated that imaging-​based selection of patients 
for treatment with thrombectomy enables successful 
identification of patients who are likely to respond to 
thrombectomy treatment beyond the traditional treat­
ment time window of 4.5 h (the DAWN12 and DEFUSE 3 
(ref.13) trials) and successful thrombolysis in patients with 
an unknown time of stroke onset (the WAKE-​UP14 and 
EXTEND15 trials). These four trials relied on modern 
imaging with CT or MRI to enable positive identification 
of a stroke and identify patients with an imaging profile 
that favoured reperfusion therapy. The results of these 
trials have major implications for the use of imaging in 
everyday clinical practice. In particular, imaging-​based 
selection could justify the transfer of patients from pri­
mary stroke centres to a thrombectomy-​capable site in 
cases when this would not previously have been done 
because the transfer could not be completed in time for 
treatment within 6 h of stroke onset.

Clinical studies have demonstrated the particular 
benefits of CT perfusion in the management of acute 
stroke. Currently, CT perfusion is generally not included 
in the standard of care for ischaemic stroke, yet the 
technique can characterize tissue viability by measuring 

Key points

•	Imaging-​based treatment guidance has been demonstrated as an effective approach 
in patients with a suspected stroke.

•	Clinical trials in which imaging is not used for patient selection are likely to include 
many patients with minor stroke or stroke mimics, making treatment effects difficult 
to detect.

•	Artificial intelligence (AI) and machine learning could provide image interpretation 
that equals or exceeds that of experts and could collate key features to assist 
clinicians with treatment decisions.

•	AI could be used to generate estimations of likely patient outcomes, which would not 
only be useful for assisting treatment decisions but also for informing family discussions.

•	AI-​based decision assistance systems could be especially useful for centres without 
dedicated stroke specialists.

•	Any decision assistance tools must be validated and applied appropriately, and clear 
guidelines are needed to define how useful systems are in clinical practice.
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haemodynamic changes in cerebral tissue. Perfusion 
imaging (CT and MRI) provides measures of cerebral 
blood flow, cerebral blood volume, mean transit time 
and tissue transit (expressed as time to peak, time to 
maximum, or delay). Processing of these images ena­
bles identification of a threshold to distinguish ischae­
mic tissue (Fig. 1). In this way, the volume and locations 
of irreversibly damaged tissue (the ischaemic core) and 
potentially salvageable ischaemic tissue (the penumbra) 
can be estimated. This approach has been validated 
against the use of MRI in patients who were treated 
either successfully or unsuccessfully with thrombolysis. 
Some variability exists in the thresholds between patients 
and software and so these tissue classifications are said to 
be estimates rather than exact measures. However, these 
thresholds have been reproduced multiple times so seem 
to be robust16–18.

The benefit of using CT perfusion to identify 
ischaemic tissue and salvageable tissue prior to rep­
erfusion therapy is highlighted by comparing trials 
of tenecteplase. In the ATTEST trial of tenecteplase19, 
patients were enrolled on the basis of standard clinical 

criteria and the overall results were negative. In another 
trial of tenecteplase conducted in Australia, CT perfu­
sion was used to enrol patients with positively identi­
fied salvageable tissue and the overall outcome was a 
positive treatment effect20. CT perfusion data had been 
collected in the ATTEST trial as a biomarker of treat­
ment response, and a post hoc pooling analysis showed 
that only 34% of patients in the ATTEST trial had  
salvageable tissue identifiable with CT perfusion, mean­
ing the majority of patients were unlikely to benefit from 
the treatment because they did not have a treatment 
target, such as penumbral tissue or a vessel occlusion. 
The pooled data revealed a substantial clinical bene­
fit of tenecteplase for patients with salvageable tissue  
(that is, a reperfusion target)21.

Analysis has shown that the ischaemic core vol­
ume estimated with CT perfusion is related to patient 
outcomes, treatment responses and rates of adverse 
events22. For this reason, CT perfusion, and specifically 
the ischaemic core volume, were used in the extended 
time window trials to select or exclude patients for 
enrolment17–20. In light of these positive trials, CT per­
fusion is being widely implemented along with CT 
angiography for the identification of patients who are 
eligible for thrombectomy and thrombolysis. With the 
increasing uptake of CT perfusion, applications have 
become available to automate the processing of perfu­
sion data and distribute the results on email or picture 
archiving and communication systems. On this basis, 
we see automated CT perfusion as one of the first steps 
towards decision support in stroke since the volumes of 
the ischaemic core and penumbra are strongly related to 
patient outcomes and treatment responses23.

The potential of AI
Improvements in stroke therapy options and available 
imaging assessments have provided clear evidence that 
treatment responses in stroke are highly heterogeneous 
and are affected by clinical factors, such as the patient’s 
age and the severity of stroke, and by factors that can 
be assessed with imaging, such as how much salvage­
able brain tissue (ischaemic penumbra)3 is present 
before treatment. If brain tissue is irreversibly injured 
(infarcted), restoration of perfusion with thrombectomy 
or intravenous thrombolysis might not improve clinical 
outcomes24. Such variability in the response to reperfu­
sion treatment for ischaemic stroke is well documented, 
and modern imaging can be used to identify subgroups 
of patients with particular treatment responses to 
intravenous thrombolysis. As such, there is enormous 
potential for an AI-​based decision support system to 
be accurate, fast and widely available if it is reliable and 
related to individual patient outcomes.

Importantly, the data used to generate a prediction 
for decision support must be relevant to the underlying 
disease process. The routine use of CT angiography and 
CT perfusion to positively identify features of ischaemic 
stroke, such as a vessel occlusion or ischaemic brain tis­
sue, provides such data. As these assessment methods 
improve and provide more granularity for the identifi­
cation of patient-​specific features, the accuracy of out­
come prediction models will also improve, resulting in 
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Fig. 1 | Perfusion imaging outputs from validated automated post-processing 
software. Each column illustrates a different CT perfusion measure. The lesion map 
displays the ischaemic core and penumbra. Cerebral blood flow represents the speed 
and volume of contrast agent arrival to the voxel. Contrast delay time is the time taken 
for the contrast agent to arrive at each individual voxel; prolonged (>3s) delays indicate 
ischaemia. The cerebral blood flow and contrast delay maps are used to generate the 
lesion map. Patient 1 has no penumbra and a very small lesion, so thrombolysis is likely  
to be futile because no treatment target exists. Patient 2 has a very large infarct core  
(>70 ml) and thrombolysis is therefore likely to be futile. Patient 3 has a large penumbra 
and small ischaemic core, making them an ideal candidate for thrombolysis treatment.
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outcome predictions that can inform clinical decisions 
for an individual patient. However, currently, the means 
of validation and identification of measures that are 
meaningful for clinicians need to be further explored.

Artificial intelligence — the basics
The field of AI is broadly defined as the design, evalua­
tion and use of non-​human ‘intelligent agents’ — systems 
that perceive their environments and can mimic human 
cognitive tasks such as learning, problem solving25 and 
acting to maximize their chances of success. Since its 
inception as an academic discipline >70 years ago, the 
field of AI has undergone several major transformative 
waves that can be characterized by shifts in emphasis 
between broad classes of problems (for example, plan­
ning, knowledge representation, formal reasoning, 
classification and prediction).

Machine learning is a modern branch of AI that 
involves the development of algorithms to identify pat­
terns or groups in data in an automated process. In con­
trast to earlier incarnations of AI in which the emphasis 
was on intelligence through understanding and explain­
ing of data, machine learning algorithms do not necess­
arily involve a semantic understanding of the input data, 
often resulting in a ‘black box’ between the problem and 
the proposed solution and a limited ability to explain 
the solution process26,27. Nevertheless, machine learn­
ing algorithms are often demonstrably more successful 
than other AI approaches at solving whole classes of 
problems.

Machine learning is still developing, and a lack of 
consistency remains in its definition and application. 
Emphasis on a particular feature is often used to define 
the whole machine learning domain — for example, the 
reliance on data rather than statistical hypotheses, or 
the automated behaviour that requires minimal human 
intervention. The proposed definitions of machine 
learning include: “a class of computational algorithms;  
a modelling strategy to let the data speak for themselves, 
to the extent possible, which makes it an attractive 
option for characterizing and predicting complex bio­
logical phenomena that do not have a priori models”28; 
and “a method of data analysis that automates analytical 
model building … based on the idea that systems can 
learn from data, identify patterns and make decisions 
with minimal human intervention”26,29.

A framework has been proposed27 that outlines three 
requirements for any machine learning algorithm: the 
algorithm, including the inputs, must be represented in 
a formal language that a computer can handle; an evalu­
ation function, such as an accuracy and error rate or a 
cost to utility ratio, that can distinguish good instances of 
the algorithm from bad ones; and a mathematics-​based 
method to search the algorithm instances and identify 
the highest scoring ones for optimization. The choice  
of this optimization technique is key to the efficiency of 
the algorithm.

Supervised learning
In supervised learning algorithms, the underlying pro­
cess provides inputs and associated outputs, and the task 
of the machine learning algorithm is to learn the best 

mapping function from the inputs to the output. This 
type of algorithm is particularly suited to addressing 
classification problems (in which the output is cate­
gorical) and regression problems (in which the output 
is measured on a difference or a ratio scale). Typical 
examples of machine learning algorithms for supervised 
learning include various regression models, classifica­
tion and regression trees, random forests, naive Bayes 
trees, support vector machines and various artificial 
neural networks, such as feedforward, recurrent and 
convolutional neural networks. For example, a support 
vector machine has been used to detect the hyperdense 
middle cerebral artery dot sign on CT22, and random for­
ests have been used for automated quantification of cer­
ebral oedema in patients with a malignant hemispheric 
infarct30.

Unsupervised learning
In unsupervised learning algorithms, no outputs are 
specified and so no learning feedback is provided, and 
the goal is to identify the underlying structure or inher­
ent grouping patterns in the input features. Unsupervised 
learning is used to address clustering problems, associa­
tion rule problems and dimensionality reduction prob­
lems. Typical examples of machine learning algorithms 
for unsupervised learning include k-​means clustering, 
principal component analysis, Boltzmann machine 
learning and different varieties of self-​organizing neural 
networks (for example, Kohonen’s self-​organized maps). 
For example, convolutional neural networks have been 
applied to lesion segmentation of acute ischaemic stroke 
with diffusion-​weighted imaging31.

Deep learning
Deep learning is the latest paradigm in machine learn­
ing, and is characterized by machine learning algo­
rithms with complex structures (for example, layers, 
hidden layers, feature maps and layer pools) combined 
with automated input feature selection that the algo­
rithm derives directly from data. By contrast, standard 
machine learning relies on human involvement in fea­
ture selection to ensure representation of the system 
being modelled. The deep learning paradigm is there­
fore better suited to applications in which the input is 
presented in a relatively raw form with little prior expert 
knowledge.

Decision support in stroke care
Treatment decision making in acute stroke is complex 
and time pressured32,33. Given the number of variables 
involved in the decision-​making process and their heter­
ogeneous relationships with patient outcomes, the devel­
opment of comprehensive predictive models based on 
individual pathophysiology is critical for guiding clinical 
practice and providing patients and their families with 
realistic expectations. Aspects of these predictive models 
that can be automated, and for which we can trust algo­
rithms, should be automated; for example, calculation of 
the volumes of the ischaemic core or penumbra from CT 
perfusion images could be automated. Such automated 
processes would provide decision support by auto­
mating aspects of the decision process and classifying 
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patient data, but would not generate individual patient 
management decisions.

To ensure that decision support systems have a mean­
ingful impact, the requirements for these systems should 
reflect the nature of the decision-​making process faced 
by stroke clinicians. This process includes making rapid 
decisions on the basis of a potentially overwhelming 
number of input features, including patient-​specific 
features (for example, age, sex, clinical severity, comor­
bidities, ischaemic core volume, collateral status, clot 
location and burden, extent of hypodensity and acces­
sibility of vessels for endovascular treatment) and fea­
tures related to the systems and processes of care (such 
as logistical, financial or human resource constraints that 
limit treatment choices). Two types of decision support 
model are particularly suitable for such tasks34. The first 
is automation of processes for which use is “frequent and 
routine, with, in general, no need to prepare the model 
for each use”12. In these models — known as decision 
automation — tolerance for any type of error is usually 
very low because decisions based on the results of the 
model are reinforced by the model and are rarely cor­
rected. The second type are models for routine decision 
support, which are “used to assist, but not replace, people 
making routine, repeated decisions”12 and with which 
a user can override the automated process. Below, we 
provide illustrative examples of both decision support 
contexts (Fig. 2).

Decision automation
Given the large body of imaging data available and the 
large volume of raw information available during assess­
ment of a patient with acute stroke, even experienced 

stroke clinicians rarely feel comfortable interpreting all 
imaging data under the time pressure required for acute 
treatment. For new clinicians, these assessments are 
challenging to learn and apply after only a few years of 
training. In this context, decision support has a role in 
reducing disagreement between clinicians and standard­
izing imaging assessment of patients with stroke. Ideally, 
trained models for imaging analysis and interpretation 
would be fully automated and would provide a summary 
for a clinical end user, who would then appreciate the 
clinical relevance of the information. Fully automated 
decision making is unlikely owing to the subtleties in 
clinical medicine that require an expert to apply their 
experience. However, automation of processes with deci­
sion automation can facilitate clinical decision making by 
addressing relatively straightforward questions, such as 
whether a CT scan contains hypodensities or early ischae­
mic changes that are indicative of a stroke. Examples of 
such automation of processes are given below.

Hypodensity detection. Non-​contrast CT has been part 
of routine stroke care since the initial trials that validated 
the use of intravenous thrombolysis. Non-​contrast CT 
is primarily used to identify haemorrhagic strokes but 
cannot reliably distinguish an ischaemic stroke from 
common stroke mimics. The early changes seen with 
non-​contrast CT that indicate an ischaemic stroke 
are parenchymal hypodensity and focal swelling35. 
Parenchymal hypodensity is often seen as a loss of 
definition between grey and white matter, reflecting 
accumulation of water (oedema) in intracellular and 
extracellular areas of the ischaemic region29. This hypo­
density on non-​contrast CT is the most common sign 

Human intelligence Artificial intelligence

Feature identification
• Non-contrast CT — ASPECTS scoring, 

hypodensity detection
• CT angiography — clot detection and 

collateral assessment
• CT perfusion — novel post-processing and 

quantification of lesion characteristics

Collection of clinical features (for example, 
age, NIHSS, demographics) to identify key 
features associated with adverse events 
and treatment response

• Multimodal
• Non-contrast CT
• CT angiography
• CT perfusion

• Age, NIHSS, risk 
factor identification

• Frailty examination
• Patient history

Imaging
interpretation

Clinical
assessment

• Severity grading
• Identification of 

markers of adverse 
events

• Tissue outcome 
prediction

Patient outcome prediction 
based on clinical and 
radiological features

Treatment decision

• Treatment recommendation
• Adverse outcome prediction
• Outcome prediction

Automation Decision support

Fig. 2 | Treatment decision making by humans alone and in combination with artificial intelligence. The human 
intelligence column indicates what happens in current routine care, whereas the artificial intelligence column illustrates 
how automation of processes and decision support can add to human intelligence. Artificial intelligence is split into  
two; automation indicates the imaging assessments and clinical data collection that can provide outputs that feed into 
decision support. Combining treatment recommendations and outcome predictions from the decision support system 
with human assessments leads to the final treatment decision. ASPECTS, Alberta Stroke Program Early CT Score; NIHSS, 
National Institutes of Health Stroke Scale.
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of ischaemic stroke and probably indicates irreversible 
injury (Fig. 3).

The problem with assessing hypodensity is that, 
in most patients, very subtle or no changes are seen 
with non-​contrast CT for up to 6 h after stroke onset. 
Infarctions and tissue hypodensity become more obvi­
ous after 12–24 h, which is when reperfusion therapy is 
less likely to be beneficial. Several attempts have been 
made to automate the measurement of hypodensity 
with machine learning techniques, and the perfor­
mance has been comparable to that of expert manual 
segmentation36,37. This result is excellent given that 
the output would predominantly be used by junior 
staff to provide them with the equivalent of an expert 
non-​contrast CT assessment.

ASPECTS assessment. The Alberta Stroke Program 
Early CT Score (ASPECTS) is a systematic method of 
assessing early ischaemic change on non-​contrast CT 

that was proposed to improve the accuracy of acute 
assessment and has since been used in clinical trials38. 
ASPECTS is a ten-​point quantitative topographic CT 
scan score determined from the evaluation of two 
standardized regions of the middle cerebral artery terri­
tory — the basal ganglia level and the supra-​ganglionic 
level. The score is calculated by subtracting one point 
from ten for any evidence of early ischaemic change in 
each of the defined regions. However, the inter-​observer 
variability for early changes on non-​contrast CT is high 
(Cohen’s κ coefficient 0.48–0.67)39 and outcome predic­
tion with ASPECTS is modest at best (sensitivity 0.78 
and specificity 0.96)38, and so incorporation of such a 
scoring system into a decision assistance algorithm is 
a challenge. The reliability of ASPECTS does improve 
with guidance from other information, such as the lesion 
location detected with CT perfusion or knowledge of the 
symptomatic hemisphere, indicating that integration of 
ASPECTS with clinical and CT perfusion data into one 
system could provide exponential gains in the reliability 
and clinical relevance of the assessments.

Automated ASPECTS scoring has been developed, 
and performance of this e-​ASPECTS system with 132 
scans was non-​inferior when compared with expert 
readers22,40. The fact that ASPECTS only takes into 
account the large middle cerebral artery region and not 
other locations where strokes commonly occur, such as 
the anterior cerebral artery or posterior cerebral artery, 
means that the automated ASPECTS measurement has 
little role in automated clinical decision support, and 
the overall usefulness of such a limited score to a cli­
nician is questionable. Importantly, however, only one 
side-​by-​side comparison of automated ASPECTS soft­
ware packages has been conducted and demonstrated 
no equivalence between the software41. These com­
parisons are vital because the underlying algorithms 
differ between applications and are likely to produce 
different results, especially given the difficulty of scoring 
hypodensity on non-​contrast CT.

Defining the aim of automation. The ultimate aim of 
using machine learning for automation of processes that 
contribute to decision making is an important consider­
ation. Junior clinicians are most likely to want fast results 
that are equally as reliable as an expert opinion, so in 
this context algorithms do not need to improve on the 
accuracy of experts but reproduce it. However, cut-​offs 
need to be defined to indicate when a measure can be 
considered clinically useful, otherwise any application 
can be considered useful simply because it uses AI. An 
alternative aim for machine learning in acute stroke 
assessments could be to derive new measures from 
existing data that would alter clinical practice altogether.

For example, when assessing the clinical utility of a 
tool such as automated detection of a clot on CT angi­
ography, a clinician should expect the model to gener­
ate an area under the curve (AUC) of at least 0.9 and to 
detect all symptomatic occlusions in any vessel (not just 
M1 occlusions, which are easily detected). Algorithms 
should also be validated with random datasets, such as 
externally acquired data that include proximal or distal 
M2 occlusions, anterior circulation, posterior circulation 

Ischaemic core
Penumbra

Lesion map Non-contrast CT

Fig. 3 | Irreversible injury in ischaemic stroke. Three CT 
scans (at different levels) from one patient who presented 
4.5 h after onset of stroke-​like symptoms. The lesion map 
shows the ischaemic region. The non-​contrast CT images 
on the right illustrate an established hypodensity (circled) 
that corresponds to the area of ischaemia. Assessing the 
value of reperfusion therapy in this scenario is challenging 
but thrombolysis is associated with a high risk of 
haemorrhage.
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and basilar artery occlusions, and suboptimal scans (for 
example, scans with motion artefacts). Without this 
depth of data and robustness of a model, the real clinical 
accuracy will not equal, let alone surpass, that of expert 
stroke physicians and neuroradiologists.

Routine clinical decision support
A fully automated decision process for the management 
of stroke is unlikely to ever be acceptable because deci­
sions ultimately rely on clinical judgement in the face 
of uncertainty rather than simply on a set number of 
features that need to be considered. For example, cli­
nicians often acquire information that is not part of a 
standard script, such as assessments of patient frailty, 
that a machine model is unlikely to appreciate but alters 
decision making. Indeed, application of an automated 
process based on limited information, such as the pres­
ence or absence of hypodensity on non-​contrast CT, is 
unlikely to make a substantive change to a yes–no treat­
ment decision as many additional factors influence the 
decision, but such variables will influence the ultimate 
clinical outcome of a patient. As a result, information 
gained from automated processes could alter the cli­
nician’s prediction about the response to treatment  
and/or the risk of an adverse event, such as a haemor­
rhage, without changing the treatment decision, mean­
ing the information is used to support the decision rather 
than dictate it. For example, patients with an ischaemic 
core larger than 70 ml seen on CT perfusion rarely have 
a good outcome and are highly likely to die within 
the first month after stroke onset (Fig. 4), and so auto­
mated measurement of ischaemic core volume provides  
valuable assistance for treatment decisions.

An ideal clinical decision support tool would 
combine broad clinical and imaging information 
into a model that generates accurate estimations of 
likely outcomes under different treatment scenarios. 
Furthermore, information used by a decision support 
system should be malleable and modifiable in light of 
new information, re-​processing of automated imaging 
data by an expert and updated clinical information. 
Indeed, images often include erroneous information as a 
result of external issues, such as patient motion or acqui­
sition anomalies (Fig. 5). These errors are often detected 
by trained reviewers (Fig. 6) but in routine hyperacute 
practice they are often overlooked and treatment deci­
sions are made on the basis of erroneous data. Treatment 
decision assistance could identify potential errors that 
could then be fixed or could enable erroneous data to 
be excluded.

Initial assessment. Clinical diagnosis of stroke requires a 
physical examination that ideally includes a standardized 
stroke severity assessment with the National Institutes of 
Health Stroke Scale (NIHSS), although this scale is not 
universally applied. A routine assessment also includes 
an attempt to rule out stroke mimics, such as a migraine 
or psychogenic presentations. These are standard clas­
sification tasks, but the number of classification options 
is enormous. The clinical definition of a stroke is very 
broad and routine assessments vary widely between 
centres and the experience of the clinicians42, adding to 

the complexity of designing a tool for routine clinical 
use. Furthermore, an ever-​increasing number of imag­
ing variables are being related to patient outcomes; for 
example, very low cerebral blood volume and extremely 
delayed contrast have been associated with an increased 
risk of haemorrhage43,44, different cerebral blood flow 
thresholds can predict the size of the ischaemic core43, 
clot burden could be a marker of the response to throm­
bolysis treatment44, and quantification of white matter 
disease can be used to predict haemorrhage42. The vol­
ume of this information is extraordinary, and the ways in 
which each of these individual variables affect responses 
to reperfusion therapy in individual patients are not at 
all clear. Given this complexity, it is not feasible that a 
decision automation system could output a clear and 
valid yes–no treatment recommendation that would 
be acceptable in today’s clinical space. However, these 
variables can be used to guide treatment or alter clinical 

Contrast delay mapLesion map

Ischaemic core
Penumbra

Increasing
delay

Fig. 4 | Identification of patients who are unlikely to 
benefit from therapy. Three CT scans (at different levels) 
from one patient who presented to hospital within 4.5 h of 
stroke onset but with a very large ischaemic core, shown in 
the lesion map. The contrast delay map indicates extensive 
delayed arrival of contrast agent (indicating ischaemia) 
throughout the ischaemic hemisphere. The scans indicate 
that the majority of the acute perfusion lesion is infarcted 
and little tissue remains to salvage. Little evidence suggests 
that therapy is beneficial in this scenario, raising ethical 
questions about therapy. An artificial intelligence-​powered 
outcome prediction model in this situation would at least 
inform family discussions.
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practice to enable collection of information that is con­
sidered important but would not routinely be collected 
in practice owing to inter-​clinician variation. Decision 
support can reduce this inter-​clinician variation and 
therefore guide treatment decision making to optimize 
patient selection for reperfusion therapy.

Treatment selection. When a patient presents with an 
acute neurological deficit, the priority for the frontline cli­
nician is to correctly diagnose whether they have a stroke 
and, if so, whether it is a primary haemorrhagic stroke or  
an ischaemic stroke. In the case of an ischaemic stroke, 
the next step is to determine whether the patient is eli­
gible for treatment with thrombolysis or thrombectomy 
and to estimate whether treatment will improve the 

outcome of the patient and to what extent. The goal of 
such an assessment is to estimate the potential benefit 
(or harm) of reperfusion treatment for ischaemic stroke. 
In this context, treatment decision assistance seems to be 
a beneficial development as it would aid in the identifi­
cation of contraindications for therapy and would auto­
matically incorporate clinical and imaging assessments 
that can be summarized for the clinician.

Global variations between health services and health 
cultures need to be taken into account in the develop­
ment of any decision support system so that local clin­
ical and non-​clinical variations can be incorporated; 
any decision support system is unlikely to be ‘one size 
fits all’. For example, the application of thrombectomy 
and intravenous thrombosis varies regionally for rea­
sons that do not relate to the interpretation of clinical 
or imaging data but are influenced by factors such as a 
lack of stroke physicians or of imaging and endovascular 
facilities. Conversely, high rates of treatment might relate 
to various incentives (such as substantial payments) in 
some regions. In this way, the structures of health sys­
tems and economic environments have critical roles 
in the delivery of health care and so would need to be 
incorporated into any decision support system. These 
factors also define the role of decision support; for exam­
ple, if no thrombectomy services are available in a given 
region, the system could only be used to identify candi­
dates for thrombolysis with limited contraindications. 
Alternatively, if travel times required for thrombectomy 
are long, such as in regional Australia, the decision to 
transfer a patient must take into account factors such 
as how the use of resources for a transfer would limit 
resources for transfer or retrieval of other patients. 
In this context, clinicians may only decide to transfer 
patients for whom the likelihood of clinical benefit is 
large and the risk of adverse events is minimal.

Similarly, predefined treatment benefit to cost ratio 
thresholds differ between countries and health systems 
on the basis of affordability (and thus also the ability to 
accurately predict individual patient responses to ther­
apy), so the treatment recommendation supported by a 
decision assistance system is likely to differ according to 
the health service in which the system is implemented. 
Other factors include local variations in protocols and 
guidelines, disagreements about what type of imaging 
should be used to assess patients (the accuracy of deci­
sion support systems could differ with different imag­
ing approaches owing to variation in imaging features 
included), and which patients should not be offered 
treatment because of regional variations in treatment 
criteria.

Acceptable accuracy. Assessment with multimodal 
imaging substantially improves prognostication in 
stroke, enabling clinicians to make more informed 
treatment decisions and to provide clarity in discussions 
with patients and their family. However, an element of 
expertise is required for interpretation and application 
of results from multimodal imaging of an individual 
patient, so such information is rarely (if ever) used to its 
full potential. For example, CT enables clinicians to pos­
itively identify ischaemia and to more accurately predict 
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Fig. 5 | Clinical implications of poor image acquisition. 
Acute CT perfusion scans (at different levels) of a patient 
who presented with clinical symptoms that suggested a 
stroke, processed with automated software. The contrast 
delay map shows delayed arrival of the contrast agent, 
indicating ischaemia, but the delay is largely below the 
ischaemic threshold, and so the lesion map is likely to  
be inaccurate. The widespread delay can result from poor 
image acquisition (for example, as a result of patient 
motion, slow contrast injection or incorrect contrast 
injection) or chronic disease. Decision support systems will 
need to take into account such factors that can influence 
imaging results.
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whether an individual will have an excellent clinical out­
come after thrombolysis45. This accuracy of prediction 
is usually expressed as the AUC, which is a performance 
measure for classification problems that indicates how 
well the classification model can distinguish between 
classes. The AUC can vary between 0 and 1, and higher 
values indicate better classification — for example, an 
AUC >0.9 would indicate accurate prediction of clinical 
outcomes. However, the pretreatment volumes of the 
ischaemic core and the penumbra are directly related to 
individual patient responses to reperfusion therapy46 and 
so improving the outcome prediction with CT perfu­
sion beyond an AUC of 0.9 is challenging, and evidence 
suggests that AI does not substantially improve on such 
results47.

A decision support model that combines data from 
CT perfusion with clinical data could take into account 
the age of the patient, their premorbid status and the 
penumbral volume to estimate that, for example, sav­
ing 50 ml of penumbral volume with effective reperfu­
sion from thrombectomy would lengthen the patient’s 
healthy life by 2 years (compared with no treatment)48. 
This kind of information is currently not available to 
clinicians in the acute stroke setting.

To achieve accurate predictions with machine learn­
ing algorithms, features presented to the algorithm need 
to provide a reasonable representation of the underlying 
clinical problem. For example, data from the successful 
MR CLEAN trial of thrombectomy have been used to 
compare machine learning techniques (such as random 
forests, support vector machine, neural network, logistic 
regression models) for the prediction of outcomes for 
trial participants. All models performed well in predict­
ing 3-month functional outcomes (AUC 0.77–0.79)49, 
but perfusion imaging data were not included in the 
predictive dataset, leaving potential for the AUC to 
increase substantially. Perfusion imaging data that pro­
vided a measure of ischaemia in patients with ischae­
mic stroke would have improved the outcome. Contrary 
to the common idea that if all data are included in a 
machine learning model then the model will get better, 
meaningful data are required for optimal outputs.

Machine learning could also help to make predictions 
about adverse events, thereby supporting the clinician 
in assessing the risks of treatment. Adverse events, such 
as symptomatic brain haemorrhage, generally result in 
severe disability or death. Furthermore, the occurrence 
of such events can affect future decision making of the 
clinicians involved. Many factors have been associated 
with adverse events or poor outcomes48,50–52, yet applica­
tion of this knowledge in individual cases is challenging 
for clinicians. Furthermore, whether the probability of a 
haemorrhage would change the treatment decision also 
depends on the probability and likely extent of the bene­
fit from therapy if haemorrhage occurs. This situation is 
ideally suited to the use of decision support, as a support 
system would provide the clinician with the information 
they need to weigh up the probability of good and poor 
outcomes for an individual and to discuss treatment 
with the patient and their family. Machine learning has 
been used in one study to predict the risk of sympto­
matic intracerebral haemorrhage in 116 patients with 

acute ischaemic stroke who were treated with intrave­
nous thrombolysis53. Of those patients, 16 developed 
symptomatic intracerebral haemorrhage, and the model 
achieved an AUC of 0.744. However, this AUC is still low 
for implementation in routine practice, where the AUC 
would ideally be >0.9.

Real-​world testing
To develop a clinical decision support system, we need to  
choose the outcome that is to be predicted; for example, 
we need to decide whether we want a system that only 
positively identifies patients with stroke, or a system 
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Fig. 6 | A poorly acquired acute CT perfusion scan.  
a | No lesion is present in the lesion map — a red ischaemic 
core and green penumbra would be expected if there were 
a lesion. However, examination of the data on which these 
images are based in part b shows incomplete data. b | The 
arterial input function (AIF) and venous outflow function 
(VOF) from which the lesion map in part a was calculated. 
Many of the data are missing. The end of the VOF has been 
cut off and long tails for both the AIF and VOF would be 
expected but are missing. The resulting lesion map could, 
therefore, be inaccurate. This scenario is dangerous 
because a lesion can easily be miscalculated. Clinicians 
review these data to assess quality, and a decision 
assistance tool could be used for quality assurance.
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that identifies patients who will respond to treatment. 
Before testing an AI application in the real world, fur­
ther discussion is needed about the level of evidence and 
supporting data that will be acceptable for a system to be 
deployed and relied on in the clinic.

In a news release in February 2018, the FDA54 defined 
AI algorithms as “a type of clinical decision support 
software that can assist providers in identifying the 
most appropriate treatment plan for a patient’s disease 
or condition” and emphasized that these algorithms 
“should not be used as a replacement of a full patient 
evaluation or solely relied upon to make or confirm a 
diagnosis”. These statements emphasize the intended 
use of AI models to support clinical experts in routine 
clinical decision making rather than to replace decision 
making with automated machine learning. The ques­
tion is how accurate the system needs to be — clinicians 
often make mistakes, but we would probably not accept 
mistakes from an automated, machine-​based system. 
The field of AI is immature and further advances are 
required, but expectations also need to be tempered. As 
an example, in one study an AI algorithm was used to 
analyse 112,000 chest x-​ray images to detect pneumonia 
and the AUC was 0.76; this AUC is low and so the algo­
rithm is unlikely to be used clinically, yet its performance 
was better than that of a team of four radiologists55. In 
another study, an AI algorithm for diagnosing trauma  
in 37,000 head CT scans achieved an AUC of 0.73, which 
is again low, but the results of the algorithm were gener­
ated 150-​fold faster than radiologist reports56, and so the 
system could be used to accelerate radiologist reporting. 
Furthermore, the AUC metric might not be the ideal 
measure of accuracy despite its common usage57,58, 
adding further complexity.

Besides the nuance of acceptable measurements  
and outcomes, another important aspect is the level and 
type of validation that will be clinically acceptable for 
algorithms to be used to guide treatment decision mak­
ing. Not everything requires a clinical trial, but testing 
new applications in the real world in patients who have 

a range of conditions (from stroke mimics to severe 
stroke) and with data that are not always optimal (for 
example, incorrect clinical information or severe motion 
on imaging) followed by re-​testing in multiple environ­
ments (for example, different hospitals and countries) 
seems the best way forward where clinical trials are not 
feasible.

Conclusions
In the context of stroke management, AI is ideally suited 
to reducing inter-​rater disagreement, improving stand­
ardization of assessments, enabling quick assessments of 
meaningful imaging data, supporting clinical decision 
making through identification of key treatment-​relevant 
variables and synthesizing these variables to predict 
treatment responses. There is also considerable scope 
for the implementation of more advanced imaging anal­
ysis to provide clinicians with contextual information, 
such as the potential ‘life expectancy’ of the penumbra 
(which would be particularly helpful when long-​distance 
inter-​hospital transfers are required), and to analyse 
every voxel in an image rather than specific elements 
such as the penumbra, ischaemic core or hypodense 
region.

The need for decision support tools provides a 
strong motivation for researchers to pool data and 
standardize assessments so that clinicians can be pro­
vided with a comprehensive and validated output. 
Perhaps the greatest value of AI for stroke clinicians is 
its ability to amalgamate, prioritize and summarize a 
large volume of clinical and imaging characteristics of 
one individual and to compare these with fitted models 
that have undergone robust evaluation and optimiza­
tion with large cohorts of data (>5,000 patients) to assist 
routine clinical decision making. This application of AI 
does not remove the need for clinician or radiologist 
assessment of imaging but is ideally suited to decision 
support.
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